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Computation Definition 

Computation is a general term for any type of information processing that can be 

represented as an algorithm precisely (mathematically). For instance, 

 Adding tow numbers in our brains, on a piece of paper or using a calculator 

 Converting a decimal number to its binary presentation or vice versa 

 Finding the greatest common divisors of two numbers 

A very fundamental and traditional branch of Theory of Computation seeks: 

1. A more tangible definition for the intuitive notion of algorithm which results in a 

more concrete definition for computation 

2. Finding the boundaries (limitations) of computation 

Algorithm 

 A finite sequence of simple instructions that is guaranteed to halt in a finite 

amount of time 

 This is a very naïve definition since we didn’t specify the nature of this simple 

instructions and we didn’t specify the entity which can execute these instructions 

An Abstract Machine 

 To make a more solid definition of algorithm we need to define an abstract 

(general) machine which can perform any algorithm that can be executed by any 

computer 

 Then, we need to show that indeed this machine can run any algorithm that can 

be executed by any other computer. Then, 

o We can associate the notion of algorithm with this abstract machine 

o We can study this machine to find the limitations of computations, 

(Problems with no computation available to solve) 

Regular Languages 

Regular languages = languages denoted by regular expressions 

            = languages accepted by DFAs  
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   = languages accepted by NFAs 

The class of regular languages is strictly contained in the deterministic context-free 

languages (DCFL) which in turn are strictly contained in the (general) context-free 

languages. 

The class DCFL consists of languages recognized by deterministic pushdown 

automata. 

A decision problem is a restricted type of an algorithmic problem where for each input 

there are only two possible outputs. 

 A decision problem is a function that associates with each input instance of the 

problem a truth value true or false 

 A decision algorithm is an algorithm that computes the correct truth value for 

each input instance of a decision problem. The algorithm has to terminate on all 

inputs 

 A decision problem is decidable if there exists a decision algorithm for it. 

Otherwise, it is undecidable 
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The Chomsky Hierarchy 

 

Turing Machine 

 A conceptual model for general purpose computers proposed by Alan Turing in 

1936 

 A Turing machine has an unlimited and unrestricted amount of memory 

 A Turing machine can do everything a real computer can do 

 Nevertheless there are problems that a Turing machine cannot solve 

 In real sense, these problems are beyond the theoretical limits of computations 

Turing Machine Specification 

Components of Turing Machine: 

1. An unlimited length tape of discrete cells 

2. A head which reads and writes on tape 
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3. A control device with a finite number of states which can 

a. Instruct the head to read the symbol on the tape currently under head 

b. Instruct the head to write a symbol on the cell of the tape currently under 

tape 

c. Move the head one cell to left or right 

d. Change its current state 

 

Turing Machine Instructions 

 Instructions of Turing Machine have the following format: 

(Current state, current symbol, Write, Move L/R or No move, New State) 

 The interpretation of the TM (Turing Machine) instructions: 

o (2, 0, 1, L, 3) 
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 When Turing machine (the control unit of TM) is at state 2 and the 

current tape symbol is 0, write symbol 1 at current tape cell and go 

to state 3 

Visualization of TM instruction  

(2, 0, 1, L, 3) 
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TM Conventions 

 We always use state 1 as the initial state 

 The tape is used for recording input and output, one symbol per cell. Initially, the 

string to serve as input to our computation is recorded beginning from the 

leftmost tape cell 

 Initially, the position of head is at left most cell 

The output of TM 

 The output of a TM program or algorithm is the sequence of symbols on the tape 

when the TM halts on that program 

TM Programs 

 A Turing machine program is a set of TM instructions 

 Turing machine halts on a program if there is no instruction in the program which 

its current state is the current state of the machine and its current symbol is the 

current symbol of the tape of the machine (symbol under head of the machine) 



9 
 

Example 

{(1, 1, 1, R, 2), (2, 1, 1, R, 2), (2, blank, blank, R, 3), (3, 1, blank, L, 4), (4, blank, 1, R, 

2)} 

 This program outputs the sum of two integers m and n given as input 

 The numbers are in base 1 (unary notation) 

 Examples of integers in unary notation 

1 = 1 2 = 11 3 = 111 4 = 1 1 1 1 …. 

Number n = n number of 1s. 

The definition of Algorithm 

We have reasons to believe that for any algorithm (finite sequence of steps which stops 

in a finite amount on time) that can be executed on any machine, there is a TM 

algorithm (program) which can be executed on TM and performs the same action. 

Decidable Problems 

 Problems, for which we can’t find an algorithm that answer all possible instances 

of the problem 

 That is there is not TM program which answer all possible instances of the 

problem in a finite amount of time 

 For a decidable problem there is a program such that if an instance of the 

problem has solution, the program eventually halts with answer. But there is no 

solution for that instance, the program will not ever halt. 

Can we consider such programs as algorithms? 

Answer: No, because they might not halt 

A problem is decidable if some Turing machine decides (solves) the problem 

Decidable languages are often called also recursive languages. 

Decidable problems: 

 Does Machine M have three states? 
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 Is string w a binary number? 

 Does DFA M accept any input? 

 

The machine that decides (solves) a problem: 

 If the answer is yes then halts in a yes state 

 If the answer is no then halts in a no state 
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Undecidable Language 

There is no Turing Machine which accepts the language and makes a decision (halts) 

for every input string. 

(machine may make decision for some input strings) 

A language is Turing-recognizable (or recursively enumerable) if it is recognized by a 

TM. That is, all words in the language are accepted by the TM. On words not belonging 

to the language, the computation of the TM either rejects or goes on forever. 

 

The Halting Problem 

Given a program/algorithm will ever halt or not? 

Taking a procedure and an input evaluate to #t if the procedure would terminate on that 

input, and to #f if would not terminate.  

Halting means that the program on certain input will accept it and halt or reject it and halt and it 

would never go into an infinite loop. Basically halting means terminating. So can we have an 
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algorithm that will tell that the given program will halt or not. In terms of Turing machine, will it 

terminate when run on some machine with some particular given input string. 

 

 

This is an undecidable problem because we cannot have an algorithm which will tell us 

whether a given program will halt or not in a generalized way by having specific 

program/algorithm. The best possible way is to run the program and see whether it halts 

or not. In this way for many programs we can see that it will sometimes loop and always 

halt. 

 

Limits of Computation: Tractable and Intractable Problems 

A problem is in P if it admits an algorithm with worst-case time-demand in O(nk ) for 

some integer k. 

N.B: a problem may also have algorithmic solutions whose time-demand grows 

unreasonably. For instance, a naïve solution for the determinant would take O(n!) while 

it can take O(n3 ) using the Gaussian elimination method. 

However there are some problems for which it is known that there are no algorithms 

which can solve them in polynomial time, these are referred to as provably intractable 

and as being in the class EXPTIME (EXPonential Time) – or wose. 

A problem is in the class EXPTIME if all algorithms to solve it have a worst-case 

time demand which is in O(2p(n)) for some polynomial p(n). 

Example: the Towers of Hanoi 
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Higher time-complexity classes 

There are other classes of problems for which the time demand cannot be bounded 

above even by a function of the form 2p(n) . In fact there are a hierarchy of these higher 

time-complexity classes such that a problem within a given class is considered ‘more 

intractable’ than all those within lower-ranked classes. 

So beyond EXPTIME we can have EXP(EXPTIME), for which the time-demands of all 

known solutions are bounded above by a multiple of  , EXP(EXP(EXPTIME)) 

problems which are in and there are problems whose time-

complexity is even worse, and cannot be bounded by any 

 

(referred to as ‘non-elementary’ problems. 

All these classes of provably intractable problems, from EXPTIME upward, can be 

referred to as having a super-polynomial time demand. 
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However it turns out that the most interesting class of problems is a class which lies on 

some sense between the class of tractable problem P and those of the provably 

intractable, super-polynomial time problems. 

These are problems which are probably intractable – but we are not sure. 

The classes NP and NP Complete 

The Hamiltonian Circuit Problem 

A connected, undirected, unweighted graph G has a Hamiltonian circuit if there is a way 

to link all of the nodes via a closed route that visits each node once, and only once. 

It is strongly believed that there are no polynomial time algorithms for this problem. 

The Traveling Salesman Problem (TSP) 

The TSP shares the extremely bad scaling behavior of the Hamiltonian circuit problem, 

and is one of the best-known examples of a problem in this ‘probably intractable’ class. 

This graph problem is similar to the Hamiltonian circuit problem in that it looks for a 

route with the same properties as required by the Hamiltonian circuit problem, but now 

of minimal length as well. 

Given a connected, undirected, weighted graph (G, W), where W is the set of edge 

weights (‘city distances’), The TSP seeks to find the shortest valid tour (a circuit visiting 

each node once and only once). 
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The Hamiltonian Circuit Problem and Traveling Salesman Problem like the Towers of 

Hanoi because although no-one has yet found a polynomial time algorithm for them, no-

one has proved that no such algorithm exists. 

The Hamiltonian Circuit Problem and Traveling Salesman Problem belong to the class 

NP-Complete, which is a subset of the larger problem class NP. NP-Complete is a 

class of problems whose time-complexity is presently unknown, though strongly 

believed to be super-polynomial, and can thus be thought of as being ‘probably 

intractable’. 

 

Thousands of problems are now known to have this probably-intractable character, 

including optimization problems such as the TSP, scheduling problems (such as the 

timetabling of lectures and exams), decision problems such as whether a map or 

graph can be colored in a certain way, whether an area of a given size can be covered 

by a specified set of patterned tiles, or if a logical assertion can be satisfied. 

Polynomial time (p-time) reduction 
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In general that a problem A reduces in p-time to another problem B, written as 

 

Means that there is some procedure, taking no more than polynomial time as a function 

of the size of the input to A, which 

 Converts an input instance of A into an input instance of B 

 Allows a suitable algorithm for problem B to be executed 

 Provides a mechanism whereby the output obtained by this algorithm for problem 

B can be translated back into an output for problem A 

The algorithm for problem B thus also provides a solution to problem A. Moreover A’s 

solution will be obtained in a time which is in the same complexity class as the algorithm 

which solves B, since the extra work needed to translate is just in p-time. Most 

importantly, if we know – or in the case of NP and NP-Complete, suspect – that we 

have a lower bound on the time demand of all possible algorithms for B, we can say that 

in terms of its fundamental difficulty problem A is no worse than problem B. 

There are three basic defining properties of problems in NP and NP-Complete 

(i) Problems in NP and NP-Complete are very hard to solve but easy to 

check 

The problems are hard because they appear to only admit algorithms whose time-

demand behavior is described by super-polynomial functions. 

However if a solution to a yes-instance of the problem is asserted then it can be 

checked in polynomial time; this ability to check a solution for correctness in polynomial 

time is referred to as a short certificate for the problem. 

(ii) Problems in NP-Complete are the hardest problems in NP 

An NP-hard problem (which may not itself be in NP) is one to which any problem in NP 

can be reduced in polynomial time: 
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If A is NP-hard, for all B in NP it is true that (be Reduced in p-time to 

A) 

The class NP-Complete is the class of problems within NP itself which have this 

property: NP-Complete = NP  NP-hard 

(iii) Problems in NP-Complete stand or fall together 

Any problem in the class NP-Complete can be shown to be reducible in polynomial 

time to any other problem in the class, meaning that there is a way in which any 

problem A can be mapped onto any other problem B using a number of steps taking no 

more than polynomial time such that a solution for B also provides a solution for A, and 

that the converse can also be done. 

 

The completeness property of the Non-deterministic Polynomial Complete problems – a 

solution to any one of them in this sense provides a solution to any other. It is the best-

known property of problems in NP-Complete because it means that should a –time 

algorithm be found for just one problem in NP-Complete, then all NP-Complete 

problems would be solvable in p-time. Moreover if this were to happen all the problem in 

NP would be pulled in too; thousands of previously-intractable problems would then in 

principle become solvable in reasonable amounts of time. 

P = NP? 

This problem is the most famous problem in theoretical computer science. 

To show P = NP 

We have to find a polynomial time algorithm for any of the problems in NP-Complete. 

This also would provide, in principle, a polynomial algorithm for all problems in the class 

of NP. 

To show P ≠ NP 
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We need to provide just one counterexample to the assertion P=NP would be sufficient 

to show that the sets P and NP are not in fact equal. 

It is important to emphasize that the stand or fall together property applies only to 

problems in NP-Complete, and not to those in NP which are not also NP-Hard, those in 

the class NP\ NP-Complete.  

 


